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Abstract

This work deals with the design and numerical approximation of an Eulerian mixture model for the simulation of two-
phase dispersed flows. In contrast to the more classical two-fluid or Drift-flux models, the influence of the velocity disequi-
librium is taken into account through dissipative second-order terms characterized by a Darcy law for the relative velocity.
As a result, the convective part of the model is always unconditionally hyperbolic. We show that this model corresponds to
the first-order equilibrium approximation of classical two-fluid models. A finite volume approximation of this system tak-
ing advantage of the hyperbolic nature of the convective part of the model and of the particular structural form of the
dissipative part is proposed. Numerical applications are presented to assess the capabilities of the model.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Two-phase flows appear in a large number of engineering applications including the petroleum industry
as well as industrial processes involving bubble column reactors (oxidation, hydrogenation, mixing of het-
erogeneous compositional materials, etc.). They also take an important place in the nuclear industry for
reactors in operating conditions as well as in severe accident conditions. The macroscopic description of
such flows is usually obtained by some averaging procedure [1–3], and is performed essentially by two
large classes of models.

The first class that corresponds to the most general form obtained from the averaging procedure consists of
separate mass, momentum and energy conservation equations written for each phase of the multiphase sys-
tem. This corresponds to the well-known two-fluid model characterized in their most general form by two dif-
ferent velocities and pressures for each phase and possibly supplemented by topological equations [4,5] as well
as the more classical one pressure, two velocity models whose closure is realized by the assumption of equality
of the phase pressures [6–9].
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The second class of model corresponds to the mixture models and consists of single conservation equa-
tion for the mixture (mass, momentum and energy) and a mass conservation equation for one of the two
phases. In this class, one can distinguish the so-called drift-flux models [10–13] for which an additional rela-
tion for the relative velocity is provided and the homogeneous models [14] that assumes a no-slip hydrody-
namic law between the two phases. Some intermediate models have been proposed between these two large
classes and we refer to [15,16] for some examples and to [3] for a presentation and a discussion of these
models.

The two-fluid models are widely used for two-phase flow studies but have some drawbacks. The first dif-
ficulty concerns the modeling of interphase exchange terms. Indeed, there is a lot of practical situations for
which the use of a two-fluid model requires an accurate modeling of the interfacial transfer terms (drag, lift,
added mass, etc.) in order to capture correctly the two-phase flow behavior. Furthermore, from a mathemat-
ical point of view, it is well known that the one pressure two-fluid system is not unconditionally hyperbolic
depending on the closure for interfacial terms. Finally from a numerical point of view, the complexity of
the modeling, the presence of non-conservative products as well as the possible loss of hyperbolicity of the
models make the approximation of these models difficult and dubious.

The mixture models are simpler and are expected to be well suited for situations where the two phases are
well coupled. However, the mixture models also experience some difficulties. The homogeneous models are
unable to take into account even a slight disequilibrium between the velocities of the phases and on the other
hand, the drift-flux models have also some drawbacks. These drawbacks lie mainly in the constitutive relation
for the drift velocity. First, the resulting system is not always hyperbolic. For instance, for two phases having
different densities, both the Stokes and the Churn drift correlations leads to non-hyperbolic systems. The sec-
ond weak point of this type of model is that the complexity of the drift-flux correlation sometimes prevents the
existence of an analytical expression of the fluxes in terms of conservative variables and thus the approxima-
tion of these models requires complex and specialized methods [12,13].

In this paper, we examine situations where the two-phase flows are characterized by a stiff mechanical relax-
ation. By stiff mechanical relaxation, we mean a situation where the velocities of the two-phase tends towards
a common value under the effects of the drag forces. In these situation, the use of homogeneous model is not
always successful as even a slight velocity disequilibrium can have a large influence on the behavior of the sys-
tem and it is often more accurate to be able to retain some non-equilibrium effects. We will show that this is
possible in the framework of mixture model by deriving the first-order Chapman–Enskog asymptotic system
corresponding to two-fluid models. In particular, we will show that the use of the Chapman–Enskog expan-
sion allows to express the relative velocity between the phases by a Darcy law. Moreover, the resulting model
is unconditionally hyperbolic and dissipative. This type of model offers therefore some advantages over the
more classical two-fluid or drift-flux models. This paper is organized as follows: In the first section we recall
in an isothermal setting the classical two-fluid model and show how to derive from it a reduced mixture model
characterized by a Darcy law for the drift (relative) velocity. The second section is devoted to the mathematical
analysis of this model. We will see that the convective part of the model is unconditionnaly hyperbolic in con-
trast to the more classical two-fluid or drift-flux model but also that it is dissipative and consistent. In the third
section of this paper, we describe the numerical approximation of this system that we have used while the last
section presents some numerical experiments.
2. A Darcy law for the drift velocity

2.1. The two-fluid multiphase model

We consider the well-known one pressure two-fluid model. Restricted to isothermal flows this model con-
sists in separate mass and momentum conservation equations for each phase:
oa1q1

ot
þr � ða1q1v1Þ ¼ 0; ð1Þ

oa1q1v1

ot
þr � ða1q1v1 � v1Þ þ rða1pÞ ¼ pIra1 þ Fd þ a1q1g; ð2Þ
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oa2q2

ot
þr � ða2q2v2Þ ¼ 0; ð3Þ

oa2q2v2

ot
þr � ða2q2v2 � v2Þ þ rða2pÞ ¼ pIra2 � Fd þ a2q2g: ð4Þ
The notations are classicals. ak are the volume fractions of each phase (a1 þ a2 ¼ 1), qk the phase densities, vk

the vector velocities and p the common pressure of the two phases.
On the right-hand side of Eqs. (2) and (4) appear some terms related to averaged momentum exchanges

between the two phases. We have focussed here on the drag force Fd and the non-conservative term pIrak

where pI denotes the macroscopic interfacial pressure. The drag force may be written as the following
pseudo-linear constitutive relation:
Fd ¼ kðv2 � v1Þ: ð5Þ

This represents the simplest form fulfilling the entropy inequality [2]. The coefficient k is a positive scalar that
may depend on the characteristics of each phase (including the relative velocity). This parameter represents the
drag coefficient for which there exist a large number of correlations [17,18] and can be viewed as a velocity
relaxation parameter controlling the rate at which the two velocities tend towards equilibrium. In this sense,
we will see that it plays a key role in deriving reduced models. The macroscopic interfacial pressure pI remains
also to be specified to close the two-fluid model. Several estimates have been proposed for this interfacial pres-
sure and we refer to [6–9] for some practical examples and their impact on the hyperbolicity of the system.

To close completely the system of the four equations (1)–(4), we must provide thermodynamical models for
the two phases. Here, we consider a slightly compressible liquid phase for which the equation of state is written
as:
p1ðq1Þ ¼ p0 þ a2
1ðq1 � qLÞ; ð6Þ
where p0 denotes some constant reference pressure. The constants qL and a1 are the corresponding density and
velocity of sound at this reference state. For the gas phase, we adopt the perfect gas equation of state:
p2ðq2Þ ¼ q2a2
2: ð7Þ
The pressure p is found by putting p1 ¼ p2 ¼ p in the two equation of states and then solving the equation:
a1q1

q1ðpÞ
þ a2q2

q2ðpÞ
¼ 1: ð8Þ
Introducing the mixture density q ¼ a1q1 þ a2q2 and the mass gas fraction of the gas by a2q2 ¼ qY and taking
the positive root of (8), the pressure is given by:
pðq; qY Þ ¼ z
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4qYa2

2ðp0 � a2
1qLÞ

q
ð9Þ
with:
z ¼ ðp0 � a2
1qLÞ þ qðYa2

2 þ ð1� Y Þa2
1Þ: ð10Þ
As stated in Section 1, the two-fluid model (1)–(4) may appear to be too complex for situations in which the
two phases are strongly coupled. This is the case for instance for a large range of dispersed two-phase flows for
which simpler models such as mixture models produce accurate results [10]. In this case, one can use simpler or
reduced models involving a mixture velocity rather than two independent ones. Indeed, this allows to reduce
greatly the modeling issue by avoiding the closure of average interphase momentum exchanges (interfacial
pressure, added mass, lift and Basset forces, etc.). From a numerical point of view this also greatly reduces
the complexity by not only avoiding the discretization of the interaction terms but also by reducing the num-
ber of waves and their treatment.

Our aim, in this paper, is to derive such a reduced mixture model while still retaining some dynamical effects
linked to the velocity disequilibrium v1 6¼ v2. We will do that by considering situations for which the drag coef-
ficient k is large (but not infinite) and consider the first-order in 1=k asymptotic equilibrium model. Indeed, it is
well known that for certain physical situations such as detonation in granular media [16], the drag coefficient
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can become very high, typically k P 1010 kg m�3 s�1. For dispersed two-phase bubbly flows this coefficient is
also expected to be large or in other words the drag terms are expected to be the dominant ones. This can be
viewed by writing the two-fluid model (1)–(4) in a dimensionless form. Introducing the dimensionless quanti-
ties as ~/ ¼ /=/� where /* denotes some reference value, the dimensionless two-fluid model can be written as:
oa1 ~q1

o~t
þ ~r � ða1 ~q1 ~v1Þ ¼ 0; ð11Þ

oa1 ~q1 ~v1

o~t
þ ~r � ða1 ~q1 ~v1 � ~v1Þ ¼ �Eua1

~r~p þ Dr~k~vr þ
a1 ~q1

Fr
g

kgk ; ð12Þ

oa2 ~q2

o~t
þ ~r � ða2 ~q2 ~v2Þ ¼ 0; ð13Þ

oa2 ~q2 ~v2

o~t
þ ~r � ða2 ~q2 ~v2 � ~v2Þ ¼ �Eua2

~r~p � Dr~k~vr þ
a2 ~q2

Fr
g

kgk : ð14Þ
Here, for the sake of simplicity, we have assumed that the macroscopic interfacial pressure is equal to the com-
mon pressure of the two phases. Eu ¼ p�=q�v�2 denotes the Euler number related to the Mach number by
Eu ¼ 1=M2 where q* and v� correspond, respectively, to some reference density and velocity.
Fr ¼ v�2=kgkL� is the Froude number and Dr is a dimensionless ‘‘drag number’’ defined by:
Dr ¼ L�k�v�r
q�v�2

: ð15Þ
At this point, to continue the analysis, an estimate for the reference drag coefficient k* has to be specified. For
dispersed two-phase flows, a large number of correlations are available (see for instance [18] for a review).
Most of them consist in writing the coefficient k as:
k ¼ 3

8r
a2CDq1kvrk; ð16Þ
where CD is a dimensionless drag coefficient and r is the average radius of the bubbles. Hence, expression (16)
allows to identify the reference drag coefficient and to write the Drag number as:
Dr ¼ 3

8

L�

r�
CD

v�r
v�

� �2

: ð17Þ
For most bubbly flows, it seems to be reasonable to assume that the relative velocity is of the same order of
magnitude than the phase velocities and thus it is legitimate to assume that the reference velocities v�r and v� are
of the same order of magnitude. This means that the drag number is driven by the ratio of the macroscopic
characteristic length L* and the microscopic one r* which is expected to be very high for dispersed flows. To
illustrate this order of magnitude analysis let us consider the typical cases of a nuclear reactor that is several
meters high: L� ¼ Oð1Þ m. In these devices, the radius of the vapor bubbles are of the order of the millimeter:
r� ¼ Oð10�3Þ m while their velocities is of the order of v� ¼ Oð10�1Þ m/s. With the usual values of the gravity
constant we thus get Fr�1 � Dr � 103 while on the other hand the Euler number is of the order of
Eu ¼ ða�=v�Þ2 where a* is some typical speed of sound and is therefore expected to be at least of the same order
of magnitude. This order of magnitude analysis thus illustrates that the three terms on the right-hand side of
the momentum equations are the dominant ones.

2.2. Chapman–Enskog derivation of the Darcy drift model

In this section, we derive the first-order asymptotic equilibrium system corresponding to large values of k in
the system (1)–(4). We model this situation by setting k ¼ k0=� with k0 ¼ Oð1Þ and let �! 0. Therefore, we
expect the two-phase velocities v1 and v2 to differ by a factor of order � and thus introduce the Chapman–
Enskog expansion
v1 ¼ v0 þ �v1
1 þ Oð�2Þ; ð18Þ

v2 ¼ v0 þ �v1
2 þ Oð�2Þ ð19Þ
into the system (1)–(4) to obtain
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Proposition 1. Assume that the interface pressure pI ¼ p þ Oð�Þ, then the first order asymptotic equilibrium

system is given by
oq0

ot
þr � ðq0v0Þ ¼ 0; ð20Þ

oq0v0

ot
þr � ðq0v0 � v0Þ þ rp0 ¼ q0g; ð21Þ

oq0Y 0

ot
þr � ðq0v0Y 0Þ ¼ �r � ðq0Y 0ð1� Y 0Þv0

r Þ; ð22Þ
where the relative velocity v0
r is given by the relation
kv0
r ¼ a0

1a
0
2

q0
2 � q0

1

q0
rp0: ð23Þ
Proof. In the case of conservative system, a full description of the Chapman–Enskog methodology can be
found in [19]. Although the system (1)–(4) is not in conservative form, the adaptation of this technique to this
system is easy and is left to the reader. The equilibrium state (denoted here by the superscript 0) is totally char-
acterized by the two-phase masses ða1q1Þ

0, ða2q2Þ
0 and the mixture momentum ðqvÞ0 or alternatively by the

variables q0; Y 0; v0. Now, assume that at any point x and time t of the domain of interest, the conservative
variables q; qY ; qv are known. According to the Chapman–Enskog methodology (see [19]), the equilibrium
state is required to match these values
q ¼ ða1q1Þ
0 þ ða2q2Þ

0
; ð24Þ

qY ¼ ða2q2Þ
0
; ð25Þ

qv ¼ ðqvÞ0 ð26Þ
then, using the expansions
q ¼ q0 þ �q1 þ Oð�2Þ; ð27Þ
Y ¼ Y 0 þ �Y 1 þ Oð�2Þ; ð28Þ
vk ¼ v0 þ �v1

k þ Oð�2Þ ð29Þ
the following relationships are obtained
q1 ¼ 0; ð30Þ
Y 1 ¼ 0; ð31Þ
Y 0v1

2 þ ð1� Y 0Þv1
1 ¼ 0: ð32Þ
Next, introducing the expansion (18), (19) into (2) and (4), we obtain
ða1q1Þ
0 Dv0

Dt
þrða0

1p0Þ ¼ p0ra0
1 þ k0ðv1

2 � v1
1Þ þ ða1q1Þ

0
gþ Oð�Þ; ð33Þ

ða2q2Þ
0 Dv0

Dt
þrða0

2p0Þ ¼ p0ra0
2 � k0ðv1

2 � v1
1Þ þ ða2q2Þ

0
gþ Oð�Þ: ð34Þ
Multiplying (33) by ða2q2Þ
0 and (34) by ða1q1Þ

0 and taking the difference of the two equations we get
k0ðv1
2 � v1

1Þ ¼ a0
1a

0
2

q0
2 � q0

1

q0
rp0 þ Oð�Þ: ð35Þ
This relation together with (32) can be solved to obtain the expression of v1
1 and v1

2. Introducing these expres-
sions in (1)–(4) results in the system (20)–(22). h
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The relation (35) is reminiscent of the Darcy law used in the study of porous media. However, it holds here
for the relative velocity v2 � v1 while in porous media, the Darcy law is used to define the fluid velocity. Rela-
tion (35) has already been obtained in [3] but seems to have been largely unexploited in the two-phase flow
literature. We also note that the previous proof shows that the diffusive velocities vk � v have to be taken into
account in the partial mass conservation equation but that they can be neglected in the mixture momentum
equation where they represent a correction of order Oð�Þ2. This is in contrast with drift-flux models where
the influence of the drift velocity is retained in the momentum equation. We finally remark that the assump-
tion on the interface pressure is usually verified since the standard models for the interface pressure [7–9] are of
the form pI ¼ p þ bkvrk2 where b is some coefficient that does not depend on the drift velocity.

2.3. Connections with drift-flux models

In the engineering literature, a large number of experimental or empirical correlations where the relative
velocity vr is expressed under the form of an algebraic expression are proposed [17,18]. The purpose of this
section is to show the connection of these models with the Darcy drift approximation:
kvr ¼ a1a2

q2 � q1

q
rp: ð36Þ
For instance in laminar flows, in the so-called Stokes regime, the relative velocity of small particles is given by
the well-known formula (see [2], formula X.2.13)
vr ¼
2a2

1r2

9l1

ðq1 � q2Þg; ð37Þ
where l1 is the viscosity of the liquid and r denotes some effective radius of the particles. On the other hand,
for dispersed flows, the drag force is usually expressed by the formula (16)
Fd ¼ 3a2

8r
CDq1kvrkvr; ð38Þ
where the dimensionless drag coefficient CD is an empirical parameter that depends on the characteristics of
the flow. This coefficient CD is usually given as a function of a2 and the bubble Reynolds number Re defined
by:
Re ¼ 2rq1kvrk=lm ¼ 2ra1q1kvrk=l1; ð39Þ

where we have used the standard estimates lm ¼ la�1

1 for the viscosity of the mixture. For instance, in the
Stokes regime Re 6 2, the drag coefficient is given by CD ¼ 24=Re. This gives the following expression for
the drag coefficient k
k ¼ 9a2l1

2a1r2
: ð40Þ
Assuming that the pressure is in hydrostatic equilibrium
rp ¼ �qg: ð41Þ

The Darcy drift law (36) together with (40) exactly gives the drift correlation (37). Actually under the assump-
tion of hydrostatic equilibrium, the Darcy drift law (36) allows to recover a large number of algebraic drift
correlations known in the engineering literature. We refer here to [20] where a large number of empirical cor-
relations are reviewed for a study of the relationship between the expression of the drag coefficient CD and
usual algebraic drift correlations.

3. Mathematical properties

In this section, we discard the external forces and study the differential part of the system. The system being
invariant by rotation, the developments will be performed in the one-dimensional case. We will use
Q ¼ ðq; qu;qY Þt as the state vector of conservative variables and write the system (20)–(22) under the form:
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oQ

ot
þ oFðQÞ

ox
¼ oDðQ;rQÞ

ox
; ð42Þ
where FðQÞ and DðQ;rQÞ denote, respectively, the ‘‘convective’’ and ‘‘diffusive’’ fluxes.

3.1. Existence of a mathematical entropy

Proposition 2. Let fkðqkÞ be the specific free energy of each phase verifying f 0kðqkÞ ¼ pk=q
2
k and let the pair ðg;GÞ

be defined by:
gðQÞ ¼ qv2

2
þ
X

k

akqkfkðqkÞ; GðQÞ ¼ ðgþ pÞv: ð43Þ
Then ðg;GÞ is an entropy–flux pair for the system (20)–(22).

Proof. The system being invariant by rotation, it is sufficient to consider the one-dimensional case. For the
pair ðg;GÞ given by (43), we must verify the relation:
rQgðQÞt � AðQÞ ¼ rQGðQÞt; ð44Þ

where AðQÞ is the jacobian matrix oFðQÞ=oQ given by:
AðQÞ ¼
0 1 0

�u2 þ op
oq

� �
qY

2u op
oqY

� �
q

�uY Y u

0
B@

1
CA: ð45Þ
Hence, the first step consists in computing rQgðQÞ. From the expression (43) for the function gðQÞ one has:
ogðQÞ
oq

� �
qu;qY

¼ � u2

2
þ g1ðq1; pÞ; ð46Þ

ogðQÞ
oqu

� �
q;qY

¼ u; ð47Þ

ogðQÞ
oqY

� �
q;qu

¼ g2ðq2; pÞ � g1ðq1; pÞ; ð48Þ
where gkðqk; pÞ ¼ fkðqkÞ þ p=qk denotes the specific Gibbs free energy of each phase. On the other hand, esti-
mating the derivatives on the right-hand side of (44) leads to:
oGðQÞ
oq

� �
qu;qY

¼ u
ogðQÞ

oq

� �
qu;qY

þ op
oq

� �
qY

" #
� u

q
½gðQÞ þ p�; ð49Þ

oGðQÞ
oqu

� �
q;qY

¼ u2 þ 1

q
½gðQÞ þ p�; ð50Þ

oGðQÞ
oqY

� �
q;qu

¼ u
ogðQÞ
oqY

� �
q;qu

þ op
oqY

� �
q

" #
: ð51Þ
At this point we are in position to verify the equality (44). Developing the product of the left-hand side of (44)
shows easily that the relation (44) is verified and this completes the proof. h
3.2. Consistency of the entropy with second order terms

Proposition 3. gðQÞ is an entropy for the system consistent with second order terms.

The consistency of the entropy with second order terms means that there exists three regular functions
GðQÞ, HðQ;rQÞ and SðQÞ such that gðQÞ satisfies the additional conservation law:
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ogðQÞ
ot
þr � GðQÞ ¼ r � HðQ;rQÞ þ SðQÞ; ð52Þ
where GðQÞ is the entropy flux defined by (44) and where SðQÞ 6 0. The proof of this result is as follows

Proof. Again, the system being invariant by rotation, the proof can be done by considering only the one-
dimensional case. Since Q satisfies the system
oQ

ot
þ oFðQÞ

ox
¼ oDðQ;rQÞ

ox
ð53Þ
then gðQÞ is solution of the equation:
ogðQÞ
ot
þrQgðQÞ � oFðQÞ

ox
¼ orQgðQÞ �DðQ;rQÞ

ox
� orQgðQÞ

ox
�DðQÞ ð54Þ
the second term on the left-hand side of this equation has been shown to be equal to oGðQÞ=ox in Proposition
2 and thus it remains to prove that orQgðQÞ=ox �DðQÞ is a positive term. We first note that we have:
rgkðqk; pÞ ¼
1

qk

rp: ð55Þ
This leads to:
orQgðQÞ
ox

�DðQÞ ¼ o

ox
ðg2ðq2; pÞ � g1ðq1; pÞÞqY ð1� Y Þvr ¼

1

k
a2

1a
2
2

ðq2 � q1Þ
2

q2
ðrpÞ2 ð56Þ
and this completes the proof. h

The previous result is important because it establishes that the Darcy drift model has a dissipative effect:
this model of the drift velocity allows a control of the total energy of the flow:

Corollary 4. Let X be a closed system, that is n � v ¼ 0 and n � rp ¼ 0 where n denotes the outward-directed

normal at the boundary oX and define N the total energy on X by:
N ¼
Z

X
gðQÞ: ð57Þ
Then N is a decreasing function of time.
3.3. Hyperbolicity

Let us write the system (20)–(22) under the compact notation (53). In this section we discard the diffusive
terms and concentrate on the first-order part of the system:
oQ

ot
þ oFðQÞ

ox
¼ 0: ð58Þ
We will prove that the system (58) is unconditionally hyperbolic. To do that, we show that this system is sym-
metrizable. The system being invariant by rotation, this study will be performed in one dimension for the sake
of simplicity.

Proposition 5. Let q ¼ ðp; v; Y Þt then the transformation q$ Q is a one-to-one mapping

Proof. This results from simple algebraic computations h

Proposition 6. The system is symmetrizable

Proof. We show below that the system written in term of the non-conservative variables q is symmetric and
can be written
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MðqÞ oq

ot
þ BðqÞ oq

ox
¼ 0; ð59Þ
where MðqÞ is symmetric definite positive and BðqÞ is a symmetric matrix.
Since, the evolution equation for the variables v and Y are obvious, it just remains to establish the evolution

equation for the pressure. For this aim, we first express the partial derivatives of the pressure with respect to
the conservative variables that are obtained by using extensively the equality of the two pressures. From this
equality and the barotropic equation of state for each phase pk ¼ pkðqkÞ, one can write:
dp ¼ a2
1

2
dq1 þ

a2
2

2
dq2: ð60Þ
Next, using the relations q1 ¼ ðq� qY Þ=a1 and q2 ¼ qY =a2 leads to:
dp ¼ a2
1

2a1

dqþ a1a2
2 � a2a2

1

2a1a2

dðqY Þ þ a2q1a2
1 � a1q2a2

2

2a1a2

da2: ð61Þ
At this point, it remains to express the last term on the right-hand side of Eq. (61) as a function of conservative
variable differentials. This can be done by using a similar route. From p1 ¼ p2 one can write a2

1 dq1 ¼ a2
2 dq2,

and then introducing again the relations qk ¼ qY k=ak leads to:
da2 ¼
1

a2q1a2
1 þ a1q2a2

2

½�a2
1a2dqþ ða1a2

2 þ a2a2
1ÞdðqY Þ�: ð62Þ
This allows to obtain the partial derivatives of the pressure using the set of conservative variables ðq; qY Þ
which are thus given by:
op
oq

� �
qY

¼ qa2

q1

; ð63Þ

op
oqY

� �
q

¼ qa2ðq1 � q2Þ
q1q2

; ð64Þ
where a denotes the average sound speed which is defined by:
1

qa2
¼
X

k

ak

qka2
k

: ð65Þ
Hence, defining the Lagrangian derivative of a quantity / by D/
Dt ¼

o/
ot þ v � r/ we have:
Dp
Dt
¼ qa2 1

q1

Dq
Dt
þ 1

q2

� 1

q1

� �
DqY
Dt

� �
¼ �qa2 1

q1

qþ 1

q2

� 1

q1

� �
qY

� �
r � v ¼ �qa2r � v: ð66Þ
Thus the system can be written in the symmetrized form (59) where the matrices MðqÞ and BðqÞ are defined by:
MðqÞ ¼
1=ðqa2Þ 0 0

0 1=q 0

0 0 1

0
B@

1
CA; BðqÞ ¼

u=ðqa2Þ 1 0

1 u=q 0

0 0 u

0
B@

1
CA ð67Þ
since the matrix MðqÞ is obviously definite positive and B is a symmetric matrix, we conclude that the system is
symmetrizable and thus that it is hyperbolic. h
3.4. Eigenstructure

These computations will be done using the set of non-conservative variables q ¼ ðp; v; Y Þt. According to the
previous result, in these variables, the system writes in matricial form as:
oq

ot
þ AðqÞ oq

ox
¼ 0; ð68Þ
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where the jacobian AðqÞ is given by:
AðqÞ ¼M�1ðqÞBðqÞ ¼
u qa2 0

q�1 u 0

0 0 u

0
B@

1
CA: ð69Þ
The matrix A admits three distinct eigenvalues given by:
k1ðqÞ ¼ u� a; k2ðqÞ ¼ u; k3ðqÞ ¼ uþ a: ð70Þ

The corresponding right eigenvectors rkðqÞ for k ¼ 1; 2; 3 are defined by AðqÞrkðqÞ ¼ kkrkðqÞ and can be chosen
as:
r1ðqÞ ¼
�qa

1

0

0
B@

1
CA; r2ðqÞ ¼

0

0

1

0
B@

1
CA; r3ðqÞ ¼

qa

1

0

0
B@

1
CA: ð71Þ
The left eigenvectors lkðqÞ for k ¼ 1; 2; 3 are defined by lkðqÞAðqÞ ¼ kklkðqÞ and are given after the normaliza-
tion lt

iðqÞrjðqÞ ¼ dij:
l1ðqÞ ¼
�1=2qa

1=2

0

0
B@

1
CA; l2ðqÞ ¼

0

0

1

0
B@

1
CA; l3ðqÞ ¼

1=2qa

1=2

0

0
B@

1
CA: ð72Þ
Proposition 7. Let ak be the speed of sound in phase k and assume that wk ¼ ðoak=opÞY > 0 then the

characteristic fields associated to the waves k1ðqÞ ¼ u� a and k3ðqÞ ¼ uþ a are genuinely nonlinear, that is they

verify rqkkðqÞ � rkðqÞ 6¼ 0 for k ¼ 1; 3 for any admissible state q.

Proof. From the eigenvalues (70) and the right eigenvectors (71) one has:
rqk1ðqÞ � r1ðqÞ ¼ rqk3ðqÞ � r3ðqÞ ¼ 1þ qa
oa
op

� �
u;Y

: ð73Þ
Hence, to complete the proof, an expression for the average sound speed derivative must be provided. We use
here similar developments as those performed in [15] by first writing the partial derivative of the sound speed
of the mixture as:
oa
op

� �
Y

¼ �a
ðqaÞ2

2

o1=ðqaÞ2

op

 !
Y

� q
oð1=qÞ

op

� �
Y

" #
: ð74Þ
Next, the density and the sound speed of the mixture are rewritten as:
1

q
¼
X

k

Y k

qk
; ð75Þ

1

ðqaÞ2
¼
X

k

Y k

ðqkakÞ2
: ð76Þ
It follows that:
o1=ðqaÞ2

op

 !
Y

¼ �2
X

k

akY kð1þ qkakwkÞ
ðqkakÞ3

; ð77Þ

oð1=qÞ
op

� �
Y

¼ � 1

ðqaÞ2
; ð78Þ
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where the coefficients wk are defined by wk ¼ ðoak=opÞY . Hence, using Eqs. (77) and (78) together with Eq. (74)
leads to:
1þ qa
oa
op

� �
u;Y

¼ ðqaÞ2
X

k

akY kð1þ qkakwkÞ
ðqkakÞ3

: ð79Þ
As indicated in [15], it is legitimate to assume that the phase sound speed ak increases with the pressure, that is
wk > 0, and thus when looking at Eq. (79) this complete the proof. h

Proposition 8. The characteristic field associated to the wave k2ðqÞ ¼ u is linearly degenerate, that is it verifies

rqk2ðqÞ � r2ðqÞ ¼ 0 for any admissible state q.

Proof. From the eigenvalue k2ðqÞ ¼ u one has rqk2ðqÞ ¼ ð0; 1; 0Þt and thus from the expression (71) for the
right eigenvector r2ðqÞ one deduce easily rqk2ðqÞ � r2ðqÞ ¼ 0. h
3.5. Riemann’s invariants

We compute in this section the Riemann’s invariants w of the system which are defined by:
rqwðqÞ � rkðqÞ ¼ 0.

We first begin with the Riemann’s invariants associated to the eigenvalue k1ðqÞ ¼ u� a. Given that r1ðqÞ
from (71) it is easy to see that Y is a Riemann’s invariant for this wave. On the other hand one can also write
from (71):
rqwðqÞ � r1ðqÞ ¼ �qa
ow
op

� �
u

þ ow
ou

� �
p

¼ 0: ð80Þ
Hence we get the following second Riemann’s invariant:
wðp; uÞ ¼ uþ
Z

p

dp
qa
: ð81Þ
Hence, to summarize, the Riemann’s invariants associated to the 1-wave are given by:
Y ; uþ
Z

p

dp
qa

	 

: ð82Þ
When we look at the Riemann’s invariants associated to the eigenvalue k3ðqÞ ¼ uþ a one can show using sim-
ilar developments that they are given by:
Y ; u�
Z

p

dp
qa

	 

: ð83Þ
Finally, given that r2ðqÞ from (71), we get easily the Riemann’s invariants associated to the eigenvalue
k2ðqÞ ¼ u:
fu; pg: ð84Þ
3.6. A reduced model in the incompressible liquid limit

In the previous sections, the liquid phase has been considered as a compressible fluid with a small but non-
zero compressibility dq1=dp ¼ 1=a2

1. However, for almost all practical purposes, one can consider the liquid
phase as incompressible with a zero compressibility coefficient. This will lead to a mixture model with a sim-
pler equation of state for the pressure. The purpose of this section is to investigate this limiting case.

Let us introduce the small parameter � defined by � ¼ 1=a1 and assume that any arbitrary variable / can be
expanded in a series in �:
/ ¼ /0 þ �/1 þ Oð�2Þ: ð85Þ
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Now, expanding all variables in (20)–(22) and collecting terms having the same power in �, we get the follow-
ing system for the corresponding power �0:
Fig. 1.
compr
volum
oq
ot
þr � ðqvÞ ¼ 0; ð86Þ

oqv

ot
þr � ðqv� vÞ þ rp ¼ qg; ð87Þ

oqY
ot
þr � ðqY vÞ ¼ �r � ðqY ð1� Y ÞvrÞ ð88Þ
with:
vr ¼
1

k
a1a2

q2 � q1

q
rp; ð89Þ
where, for the sake of simplicity, the subscript 0 of the developments (85) has been omitted. Hence, the zero
order model is formally equivalent to the fully two-phase compressible original system (20)–(22). On the other
hand, the introduction of the expansion (85) in the two equations of state leads for the zero order to:
q1 ¼ qL; ð90Þ

q2 ¼
p
a2

2

: ð91Þ
The pressure is thus expressed simply through the relation:
pðq; qY Þ ¼ qLqYa2
2

qL � qþ qY
: ð92Þ
This results in a simpler thermodynamic closure. It must also be noticed that in the incompressible liquid limit,
the averaged speed of sound is now given by:
a2 ¼ q2a2
2

qa2

: ð93Þ
Fig. 1 compares the sound speed for the compressible model and in the incompressible liquid limit given by
(93). It can be seen that for all practical purposes, except in the case of very small gas volume fraction, the two
thermodynamical models give identical results.
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4. Numerical approximation

The solution is approximated in time by splitting the complete drift-flux mixture model in two steps. The
first one corresponds to the convective part which consists in advancing the solution during one time step
Dt ¼ tnþ1 � tn as:
~Qnþ1 �Qn

Dt
þr �FðQnÞ ¼ BðQnÞ ð94Þ
with FðQÞ ¼ ðqu; qu2 þ p; qYuÞt and BðQÞ ¼ ð0;�qg; 0Þt. This provides an intermediate solution which is de-

noted here as ~Qnþ1. Then, the second one corresponds to integrate the second order term in the gas mass frac-
tion conservation equation. In order to avoid a too constrained stability criterion, this step is discretized by a
fully implicit scheme which reads:
Qnþ1 � ~Qnþ1

Dt
¼ �r �DðQnþ1;rQnþ1Þ ð95Þ
with DðQ;rQÞ ¼ ð0; 0; qY ð1� Y ÞvrÞt. The two next sections focuss on the two steps which are approximated
in space by means of a finite volume method. In the sequel, these two steps will refer to the convective and the
diffusive step respectively.

4.1. Convective step

We present in this section the finite volume scheme corresponding to the first convective step. We adopt the
following notation for the cell average at time tn of the solution on cell K:
Qn
K ¼

1

jKj

Z
K

Qðx; tnÞ: ð96Þ
Integrating the first step (94) and using the divergence theorem leads to:
jKj
~Qnþ1

K �Qn
K

Dt
þ
X

r¼KjL
jrjUrðQn

K ;Q
n
L; nrÞ ¼ jKjBðQn

KÞ; ð97Þ
where KjL denotes the interface between cells K and L and Ur is the numerical flux at this interface. We have
used three different Riemann solvers for estimating the numerical flux. The first corresponds to the Godunov
scheme developed in the incompressible liquid limit which consists in calculating the numerical flux as:
UrðQn
K ;Q

n
L; nrÞ ¼ nr �FðQ�rðQ

n
K ;Q

n
LÞÞ; ð98Þ
where Q�r corresponds to the exact Riemann solution at the cell interface r that corresponds to the characteristic
xn=t ¼ 0. A detailed description of the exact solver in the incompressible liquid limit is given in Appendix A. The
other two are approximate Riemann solvers and are described in the next two sections.

4.1.1. The VFRoe-ncv scheme

We present in this section an approximate Riemann solver proposed initially by Gallouët and Masella [21]
for the Euler equations. We refer to [15,22] for more recent applications of this solver in the frame of two-
phase compressible flows. The method consists in replacing the original local Riemann problem at each cell
interface by a linearized one and then solve it exactly. Hence, one has to solve at each interface of the mesh
the following linearized Riemann problem:
oq

ot þ Aðq̂Þ oq

on ¼ 0;

qðxn; 0Þ ¼
qK if xn < 0;

qL if xn > 0;

����
8><
>: ð99Þ
where xn denotes the coordinate in the local frame of the interface. The average for estimating the jacobian in
(99) corresponds to the arithmetic average between the left and the right states: q̂ ¼ ðqK þ qLÞ=2. It is well
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known that the properties and then the behavior of this scheme depend on the choice of the variables q. Here,
in order to preserve Riemann invariants across contact discontinuities and from numerical experiments per-
formed in [23] the symmetrizing variables q ¼ ðp; u; Y Þt have been selected. Hence, the local jacobian is given
by Eq. (69) and the solution of the local linearized Riemann problem at each cell interface is given by:
q�r ¼ qðxn=t ¼ 0; qK ; qLÞ ¼ qK þ
X
k̂k<0

âk r̂k ¼ qL �
X
k̂k>0

âk r̂k; ð100Þ
where âk ¼ l̂t
kðqL � qKÞ and where r̂k and l̂k are given by (71) and (72) evaluated on q̂.

4.1.2. The HLL scheme

We present here the application of the HLL solver [24] to system (20)–(22). This approximate solver offers
the advantage to be very simple and is well-known to be very robust while smearing contact discontinuities
owing to its two-waves structure description. The HLL-Riemann solver consists of three constant states in
the ðxn; tÞ phase plane, that is:
Q�rðxn=tÞ ¼
QK if xn=t < SK ;

Qhll if SK 6 xn=t 6 SL;

QL if xn=t > SL;

8><
>: ð101Þ
where SK and SL correspond, respectively, to the smallest and the largest wave speeds. The numerical flux
function corresponding to the intermediate state is given by:
Uhll
r ¼

SLFðQKÞ � SKFðQLÞ þ SKSLðQL �QKÞ
SL � SK

: ð102Þ
Then, the complete intercell numerical flux is given by:
Ur ¼
FðQKÞ if 0 < SK ;

Uhll
r if SK 6 0 6 SL;

FðQLÞ if 0 > SL:

8><
>: ð103Þ
At this point, it remains to provide estimates for the wave speeds SK and SL. We use here the standard
estimate:
SK ¼ minðuK � aK ; uL � aLÞ; SL ¼ maxðuK þ aK ; uL þ aLÞ: ð104Þ
4.2. Diffusive step

The discretisation of the diffusive step takes advantages of the particular form of the gas mass fraction
equation that writes
oqY
ot
þr � ðqvY Þ ¼ �r � ðf ðY ÞqvrÞ ð105Þ
with f ðY Þ ¼ Y ð1� Y Þ. Integration of (95) on a cell K and applying the divergence theorem leads to:
jKjqnþ1 Y nþ1
K � ~Y nþ1

K

Dt
þ
X

r¼KjL
jrj½frðY K ; Y LÞðn � qvrÞþr þ frðY L; Y KÞðn � qvrÞ�r �

nþ1 ¼ 0; ð106Þ
where we have already used qnþ1 ¼ ~qnþ1. In (106) we have introduced the standard notation v�r ¼ ðvr � jvrjÞ=2.
The function frðY K ; Y LÞ corresponds to a monotone flux discretization of f ðY Þ ¼ Y ð1� Y Þ which satisfies the
following properties [25]:

– fr is locally Lipschitz continuous from R2 to R,
– frðY ; Y Þ ¼ f ðY Þ for all Y 2 ½Y K ; Y L�,
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– ða; bÞ ! frða; bÞ, from Y 2 ½Y K ; Y L�2 to R, is non-decreasing with respect to a and non-increasing with
respect to b.

Several choices are possible for the numerical flux function fr and we refer to Eymard et al. [25] for some
examples and cited references. We adopt here the following simple flux-splitting formula:
frða; bÞ ¼ f1rðaÞ þ f2rðbÞ; ð107Þ
where f1rðaÞ ¼ a and f2rðbÞ ¼ �b2 are, respectively, non-decreasing and non-increasing functions. Such a
monotone flux discretization ensures the existence and the unicity of the solution of (106) together with the
fact that this solution lies in the physical interval [0,1] [26].

On the other hand, we use the following approximation for estimating ðn � qvrÞr at each cell interface:
ðn � qvrÞnþ1
r ¼ qnþ1

r

Y nþ1
r � ~anþ1

r

k
pnþ1

K � pnþ1
L

dr

dr � nr

dr
ð108Þ
with /r ¼ ð/K þ /LÞ=2 for / ¼ q; Y ; a and dr is the oriented vector from node K to node L with dr the cor-
responding measure. In Eq. (108), the notation pnþ1 refers to pðqnþ1; Y nþ1Þ where we recall that qnþ1 corre-
sponds to the solution given by the first convective step. A Newton algorithm is used to solve Eq. (106). In
practice, only three iterations are necessary to reach convergence.

5. Numerical results

5.1. Moving contact discontinuity

The first test case is a standard test case for simulating multiphase materials and consists in the advection of
a material interface between air and water. Initial data correspond to a material interface located at x = 0 in a
tube of length L = 1 m with water on the left and air on the right. The density of the two phases are
q1 ¼ 1000 kg m�3 and q2 ¼ 1:2 kg m�3 for water and air respectively. Both the pressure and the velocity
are initially constant: p ¼ 105 Pa and u = 1000 m s�1. The averaged sound velocity being infinite for a purely
liquid mixture, the void fraction is set to a2 ¼ 10�3 on the left of the material interface while a2 ¼ 1 on the
right.

The tube is discretized with 1000 cells, the time scheme is explicit with a CFL number equal to 0.4. The
results are shown at time t ¼ 210�4 s in Fig. 2 using the Godunov (dashed line), the VFRoe-ncv (circle)
and the HLL (cross) solvers. These three solvers exactly preserve both constant velocity and pressure across
the contact discontinuity. The analytical proof of this result is given in Appendix B.

5.2. Stationary shock

We show through this test case that the mixture Darcy drift model presents an interesting and rather unu-
sual property. Namely that the presence of the drift terms prevents the mass fraction to being constant inside a
shock.

In a first step, we assume that the drift (or relative) velocity is zero, then the Rankine–Hugoniot relations
for the system (20)–(22) are:
D½qu� ¼ usD½q�; ð109Þ
D½qYu� ¼ usD½qY �; ð110Þ
D½qu2 þ p� ¼ usD½qu�; ð111Þ
where us denotes the shock velocity. Combining the first equation (109) and the second one (110), one can
check that if the mass flux qðu� usÞ across the discontinuity is non-zero, then the mass fraction Y is constant
across the discontinuity. We test this result considering a stationary discontinuity located at x = 0 m in a tube
of length L ¼ 1:2 m between the following two states:
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Fig. 2. Moving contact discontinuity.
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q2

u

Y

0
B@

1
CA

L

¼
0:099

10:

10�4

0
B@

1
CA;

q2

u

Y

0
B@

1
CA

R

¼
0:2973

10:� 3:3519693

10�4

0
B@

1
CA:
As shown in Fig. 3 one can check that the Godunov scheme is able to compute the exact solution for this case
and to capture the discontinuity on one point.

We now perform the same computation using the Darcy drift law (23). Here, we simply take a constant
value of the drag coefficient k and we adopt the standard procedure of [27,28] to estimate this value. This tech-
nique consists in setting first k ¼ a2Cw and then neglecting all terms in the gas momentum equation except the
drag force and the pressure gradient. This leads to:
vr ¼ �
rp
Cw

: ð112Þ
This relation allows to relate directly the coefficient Cw to the terminal velocity of a rising bubble in the case of
non-interacting single bubbles in a stagnant liquid. For instance, the commonly adopted value of the velocity
of a single air bubble rising in water is about 0.2 m.s�1. This corresponds roughly to Cw ¼ 5:104 kg m�3 s�1 for
a2 around 0.5. In the numerical experiment reported here, we have used the constant value k ¼ 104 kg m�3 s�1
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Fig. 3. Stationary shock, infinite drag coefficient.
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that corresponds to the same order of magnitude. For the test-case reported here, the use of different values of
k does not change the structure of the solution but simply modify the thickness of the shock zone. The results
are displayed in Fig. 4. In order to capture the shock zone, we use a refined mesh with 4000 nodes and com-
pute the solution until a steady state is obtained. One can check that the mass fraction is not constant inside
the shock zone and this contrasts to the previous case. Indeed, consider a travelling wave of speed us separat-
ing two constant states ðq2; u; Y ÞL and ðq2; u; Y ÞR in x ¼ �1 and x ¼ þ1. Integration of the first two equa-
tions of the system (20)–(23) between �1 and x leads to:
qðxÞ½uðxÞ � us� ¼ qL½uL � us�; ð113Þ
qðxÞY ðxÞ½uðxÞ þ ð1� Y ðxÞÞurðxÞ � us� ¼ qLY L½uL � us�; ð114Þ
where we have used that in x ¼ �1 the drift velocity ur (proportional to the pressure gradient) is zero. Hence,
introducing the mass flux mL ¼ qL½uL � us�, combination of these two equations leads to:
mL½Y ðxÞ � Y L� ¼ �qðxÞY ðxÞð1� Y ðxÞÞurðxÞ ¼ �Y ðxÞð1� Y ðxÞÞa1ðxÞa2ðxÞðq2ðxÞ � q1ðxÞÞ
op
ox
: ð115Þ
If mL > 0 and since in a right propagating shock, the pressure gradient is positive, this leads to:
-4 -3 -2 -1 0 1 2 3 4x (m)�  = + 
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Fig. 4. Stationary shock, finite drag coefficient k ¼ 104 kg m�3 s.�1.
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Y ðxÞP Y L: ð116Þ

That is exactly what can be noticed from the numerical experiment in Fig. 4. This behavior is in clear contrast
with the behavior of multicomponent models where the drift velocity is modeled by a Fick law.

5.3. Two-fluid shock tube

We present here numerical results for the two-fluid shock tube problem presented in [13] with a slip hydro-
dynamic law. The computation is performed in a tube of length L = 100 m with a discontinuity between the
two initial constant states located at x = 50 m. For this test case, the gas sound speed is fixed to:
a2 ¼ 300 m s�1. The two states are given by:
q
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The hydrodynamic law used in [13] corresponds to the Zuber–Findlay [29] correlation which can be written as:
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ur ¼
u1 � ð1� c0Þu

1� a2c0 � Y ð1� c0Þ
; ð117Þ
where c0 is the so-called distribution parameter and u1 the terminal velocity of a single bubble in a quiescent
liquid. In [13], the values u1 ¼ 0:2162 m/s and c0 ¼ 1:07 have been used. To compare our model with such a
highly empirical relation for the relative velocity, we investigate this case by following the procedure described
in the previous numerical experiment and set here directly the value: k ¼ Cw ¼ 5:104 kg m�3 s�1 that corre-
sponds roughly to the same terminal velocity.

Numerical results are presented in Fig. 5 at time t ¼ 0:5 s using the Godunov, VFRoe-ncv and HLL solvers
with 5000 nodes using an explicit time integration for the first convective step and a constant CFL number
equal to 0.5. The results are globally identical for the three schemes except that the Godunov and VFRoe sol-
ver produce small oscillations on the solution for the density and the gas mass fraction located near the con-
tact discontinuity. These small oscillations are not present when using the more diffusive HLL solver. These
small oscillations disappear when using smaller values of the coefficient k and therefore can be due to a lack of
spacial resolution.
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VFRoe-ncv
The results are surprisingly close to those obtained in [13] given the very different nature of the two models
used. The general structure of the solution that corresponds to a shock-contact discontinuity-shock pattern is
the same and the same wave speeds are observed. The main difference occurs on the gas mass fraction. In the
Drift-flux model of [13], the passage of the shock creates a plateau with higher values of the gas mass fraction
while for the Darcy drift model, the gas mass fraction returns to its initial value after the passage of the shocks.

5.4. Water faucet problem

We continue this presentation of numerical test cases by two problems for which a priori the Darcy drift
mixture model is inappropriate. These problems involve the decoupling of the motion of the liquid and gas
and should require the use of two-fluid models. The first problem is the water faucet problem, a very standard
test case for simulating two-phase flows using a two-fluid model [5,30,31].

This test consists in a vertical tube of length L = 12 m initially filled with a two-phase mixture of air and
water with a2 ¼ 0:2. The velocity of the water u1 is initially equal to 10 m s�1 while the velocity of the air u2 is
null. For t > 0, the gravity field is introduced g ¼ 9:81 m2 s�1 and the boundary conditions correspond to a
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flow of water at the top boundary with u1 ¼ 10 m s�1, u2 ¼ 0 m s�1 and a2 ¼ 0:2, while the bottom boundary
corresponds to an outflow condition with the prescribed constant pressure p ¼ 105 Pa.

The simulation of the water faucet problem is usually performed with a null drag force. Under the assump-
tion of a constant pressure in the gaseous phase, the problem admits an analytical solution for the void frac-
tion (e.g. [32]):
Fig. 7.
schem
a2 ¼
1� ð1�a0

2
Þu0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþðu0

1
Þ2

p if x 6 u0
1t þ gt2

2
;

0:2 otherwise;

8<
: ð118Þ
where a0
2 and u0

1 correspond, respectively, to the initial void fraction and water velocity. In our numerical sim-
ulation, the inflow state is computed here using Riemann’s invariants across the outgoing characteristic k1. In the
case of the reduced model in the incompressible liquid limit, the Riemann invariants given by (82) simplify to:
Y e ¼ Y i; ð119Þ

ue þ a2

ffiffiffiffiffi
Y e

p
ln

q2e

q1Y e
¼ ui þ a2

ffiffiffiffiffi
Y i

p
ln

q2i

q1Y i
; ð120Þ
where the subscript e refers to the inflow state while the subscript i denotes the cell values adjacent to the
boundary. From these invariants, one can write the following relation for the inflow density:
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� a2e

qe
q1

s
ln

qea2i

qia2e
þ ue � ui ¼ 0: ð121Þ
Hence, given the prescribed velocity ue and void fraction a2e at the inflow boundary, the inflow density is com-
puted from Eq. (121) using an iterative algorithm.

The numerical results are shown in Fig. 6 using +500 nodes and a constant CFL number equal to 0.4. It can
be checked that for k ¼ þ1 that is for a relative velocity equal to zero, the solution given by the Darcy drift
model (that reduces in this case to an homogeneous model) is totally false. However, for small values of the
drag coefficient: k ¼ 102 and 10�2 kg m�3 s�1, the solution becomes in good agreement with the analytical
solution and of comparable accuracy with solutions obtained with two-fluid models. Moreover, as seen in
Fig. 7, that displays the results of a mesh convergence study using the Godunov scheme, the numerical solu-
tion converge to the analytical solution. These results seem to indicate that the domain of validity of the Darcy
drift model is not limited to large values of the velocity relaxation parameter.
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5.5. Sedimentation

Our last test problem also involves a decoupling of the motion of the liquid and the gas which requires the
use of a two-fluid model. Hence, for this problem, it is also expected that the Darcy drift model is a priori
inadequate for simulating this problem.

We present here numerical results obtained with the proposed Darcy drift model for the sedimentation test
problem. This problem is also a classical benchmark test for the two-fluid models [22,30–32].

We consider a vertical tube of length L ¼ 7:5 m filled with a two-phase mixture of air and water with
q1 ¼ 1000 kg m�3 and q2 ¼ 1:2 kg m�3 at the ambient pressure p0 ¼ 105 Pa. Initial conditions correspond
to a2 ¼ 0:5, u ¼ 0 m s�1 and p ¼ p0. The domain is closed and thus both the top and the bottom boundaries
correspond to reflective conditions.

Then, at time t = 0 s, the two-phase mixture is set under the action of the gravity g ¼ 9:81 m s�2 which pro-
vides phase separation for t > 0. In the frame of the two-fluid models, this test is usually performed neglecting
all forces, including the interfacial drag force, excepted the gravity.
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Here we mimic these conditions by investigating two different values for the velocity relaxation coefficient:
k ¼ 102 and 10�2 kg m�3 s�1. We have also included the solution corresponding to the homogeneous mixture
model which is obtained in the limit k ¼ þ1.

The results displayed in Fig. 8 show clearly that the homogeneous mixture model corresponding to k ¼ þ1
does not reproduce the separation phenomenon. On the other hand, the solution obtained with smaller values
for the coefficient k are in good agreement with well-known solutions produced by two-fluid models. This is quite
surprising and constitutes to the best of our knowledge an original result obtained with such a simple model.

From the computational point of view, we also note that this computation is difficult for the present explicit
numerical scheme used in the convective step. Actually, as separation occurs, a2 becomes small in the liquid
part of the domain and then according to (93) (see Fig. 1), the speed of sound rises to infinity and the com-
puted time step becomes extremely small as the (quasi) liquid region develops. It is therefore extremely difficult
to advance in time with the present explicit method. In addition, we have also noted that the VFRoe solver
produces negative values for the gas mass fraction in the cell adjacent to the wall boundary in the liquid
region. Therefore, the computations reported here have been performed only with the HLL solver using
100 cells and a constant CFL number equal to 0.4. Due to the quite diffusive nature of this solver, even if sep-
aration occurs, the value of the gas volume fraction in the quasi-liquid region are not too small and the solu-
tion can be advanced in time at a reasonable cost.

6. Conclusion

In two-phase flows, except for very simple or specialized cases, the velocities of the two phases are usually
different. For this reason, two phase flow modeling is usually performed either by two-fluid models with two
velocities and one pressure or by simpler drift-flux models where the difference of the velocities of the two
phases is given by algebraic correlations. In the two cases, this leads to serious mathematical and numerical
difficulties. The first-order part of these models is usually not hyperbolic and therefore one has to rely on sec-
ond-order diffusive terms to insure the well-posedness of the models. Moreover, from the numerical point of
view, one has to give up the standard approximation methods and devise appropriate numerical schemes with
unknown convergence properties.

Here, we have proposed to investigate another type of models where the relative velocity between the
phases is given by a Darcy law. We have shown that this relation appears naturally in a Chapman–Enskog
first-order asymptotic approximation of the two-fluid models. The convective part of the model is always
hyperbolic and standard approximation methods can be used for its discretization. Moreover, the second-
order part of the model given by the Darcy law is dissipative and its particular structure allows to use a numer-
ical scheme that preserves the maximum principle. The applications of the model to some standard problems
in two-phase modeling are particularly satisfactory given the simplicity of the model.
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Appendix A. Godunov solver in the incompressible liquid limit

In this section, we give a quick description of the exact Godunov solver used to compute approximate solu-
tions of the system
oq
ot
þ oqu

ox
¼ 0; ðA:1Þ

oqu
ot
þ oðu2 þ pÞ

ox
¼ 0; ðA:2Þ

oqY
ot
þ oqYu

ox
¼ 0 ðA:3Þ
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with the state law:
pðq; qY Þ ¼ q2a2
2 ¼

qLqYa2
2

qL � qþ qY
: ðA:4Þ
The Godunov flux being given by
UðQn
L;Q

n
RÞ ¼FðQ�ðQn

L;Q
n
RÞÞ; ðA:5Þ
where Q� corresponds to the exact Riemann solution at the cell interface, the description of the solver reduces
to the computation of this interface value. First, we note that due to the eigenstructure of the system given in
Section 3.4, the solution of the Riemann problem will be composed of four states separated by a 1-wave asso-
ciated with the genuinely nonlinear field k1ðQÞ ¼ u� a, a contact discontinuity associated with the linearly
degenerate field k2ðQÞ ¼ u and a 3-wave associated with the genuinely nonlinear field k3ðQÞ ¼ uþ a. Across
the 2-wave, pressure and velocity are constant by the relation (84). Let us denote, p�; u�, the values of these
variables across this wave. We note that due to the state law p ¼ q2a2

2 where a2 is the (constant) speed of sound
in the gas phase, it is equivalent to find the value of the couple q�2; u

� and we will use these variables in the
sequel. Now, since, Y is constant across a shock wave and by (82), (83) is also constant across 1-rarefaction
and 3-rarefaction waves, we will have
Y ðx=tÞ ¼
Y L if x=t < u�;

Y R else

	
ðA:6Þ
and thus, the problem reduces to find the value of the couple q�2; u
�.

Let us denote C3ðq2Þ the curve in the q2; u plane defining the states q2; u that can be connected to a given
right state qR

2 ; u
R either by a 3-shock or by a 3-rarefaction wave. Using the Rankine–Hugoniot relations (109)–

(111) as well as the expression of the Riemann invariants (83) one obtains:
u ¼ C3ðq2Þ
uR þ

ffiffiffiffiffiffiffiffiffiffi
a2

2Y R
p q2�qR

2ffiffiffiffiffiffiffi
q2q

R
2

p if q2 > qR
2 ;

uR �
ffiffiffiffiffiffiffiffiffiffi
a2

2Y R
p

Ln
qR

2

q2
else:

8><
>: ðA:7Þ
Similarly, if we note C1ðq2Þ the curve in the q2; u plane defining the states q2; u that can be connected to a given
left state qL

2 ; u
L either by a 1-shock or by a 1-rarefaction wave, use of the Rankine–Hugoniot relationships and

of the expression of the Riemann invariants (82) will give us
u ¼ C1ðq2Þ
uL �

ffiffiffiffiffiffiffiffiffiffi
a2

2Y L
p q2�qL

2ffiffiffiffiffiffiffi
q2q

L
2

p if q2 > qL
2;

uL þ
ffiffiffiffiffiffiffiffiffiffi
a2

2Y L
p

Ln
qL

2

q2
else:

8><
>: ðA:8Þ
The expression of q�2; u
� is then obtained by computing the intersection of these two curves. One can note that

since q2 ¼ 0 is an asymptote to the curves C1ðq2Þ and C3ðq2Þ, the intersection of these two curves always exists
and is unique.

Appendix B. Numerical preservation of velocity and pressure through a contact discontinuity

The key argument of the proofs lies in the linearity of qY with q at fixed p in the equation of state. Using
similar developments as those used by Gallouët et al. [33] and Murrone and Guillard [15], we show here that
any Godunov solver preserving both the velocity and the pressure for the intermediate state also preserves the
cell values of the velocity and the pressure for the barotropic Darcy drift model in the incompressible liquid
limit. This is obviously the case for the exact Godunov solver presented in the previous section and this is also
the case for the VFRoe-ncv solver using primitive variables ðp; u; Y Þt as demonstrated in [33].

Let us note k ¼ Dt=Dx, the starting point consists in writing the discrete version of the mass conservation
equation for the ith cell using the known intermediate state un

i�1=2 ¼ u0:
qnþ1
i ¼ qn

i � kððquÞniþ1=2 � ðquÞni�1=2Þ ¼ qn
i � ku0ðqn

iþ1=2 � qn
i�1=2Þ: ðB:1Þ



In the same way, using the known intermediate state pn
i�1=2 ¼ p0, the discrete form of the momentum conser-

vation equation writes:
ðquÞnþ1
i ¼ ðquÞni � kððqu2 þ pÞniþ1=2 � ðqu2 þ pÞni�1=2Þ ¼ ðquÞni � kððqn

iþ1=2u2
0 þ p0Þ � ðqn

i�1=2u2
0 þ p0ÞÞ

¼ qn
i u0 � ku2

0ðqn
iþ1=2 � qn

i�1=2Þ: ðB:2Þ
Hence, by using the mass conservation Eq. (B.1), this show that unþ1
i ¼ u0.

At this point, the preservation of the pressure remains to be studied through the gas mass fraction conser-
vation equation. Using the same notations, the discrete finite volume version of the gas mass fraction equation
writes:
ðqY Þnþ1
i ¼ ðqY Þni � k½ðquY Þniþ1=2 � ðquY Þni�1=2� ¼ ðqY Þni � ku0½ðqY Þniþ1=2 � ðqY Þni�1=2�: ðB:3Þ
Then, from Eq. (92)
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